⁵⁷Fe and ¹¹⁹Sn Mössbauer Spectra of Phosphine and Phosphite Derivatives of $Ph_{3-n}Cl_nSnFe(CO)_2(\pi-C_5H_5)$ Compounds

G. M. BANCROFT and A. T. RAKE

Department of Chemistry, University of Western Ontario, London, Ontario, N6A 3K7, Canada Received October 8, 1974

The ¹¹⁹Sn Mössbauer spectra of the series $Ph_{3-n}Cl_n$ $SnFe(CO)_{2-x}cpL_{x} [n = 0-3, x = 1 \text{ for } L = PPh_{3}, PEt_{3},$ $P(OPh)_{3}$, and x = 2 for $L = P(OPh)_{3}$ are reported, together with the ${}^{57}Fe$ Mössbauer parameters, v_{CO} stretching frequencies, and $\tau_{C_5H_5}$ nmr shifts for the series $Ph_{3-n}Cl_nSnFe(CO)cpL$ (n = 0 to 3, and L = COor PPh₃) and Cl_3 SnFe(CO)_{2-x} cpL_x [x = 1 for L = PPh₃, PEt₃, P(OPh), $P(OEt)_3$ and x = 2 for $L = P(OPh)_3$. The ⁵⁷Fe centre shifts show that there is a large Fe 4s character in the Fe–Sn bond, and that $(\sigma + \pi)$ of the L ligands increase in the order $PPh_3 < PEt_3 < P(OPh)_3$ $< P(OEt)_3 < CO$. The change in substituents on the Fe atom results in considerable variation in the ¹¹⁹Sn parameters. The ¹¹⁹Sn quadrupole splittings indicate that the Fe-Sn bond has a smaller Sn 5s character in Fe(CO)cpL compounds than in the $Fe(CO)_2cp$ compounds. Together with results on phosphine-substituted $SnCo(CO)_4$ compounds, it is shown that discrepancies between predicted (using partial quadrupole splittings) and observed quadrupole splittings are substantially due to the variations in s character of the Sn-M (M = Fe, Co) bonds.

Introduction

In previous papers,^{1,2,3} we have reported the ¹¹⁹Sn Mössbauer parameters of a large number of four coordinate Sn compounds of the type $R_1X_mSnM_n$ (l+m+n = 4, R = Me, Ph, C_6F_5 ; X = Cl, Br, I; M = Mn(CO)₅, Fe(CO)₂cp and Co(CO)₄). Partial quadrupole splittings⁴ (pqs) have been used successfully to rationalize variations in signs and magnitudes of quadrupole splittings (Q.S.). From the pqs values, the donor strength of the ligands were determined, and from the centre shifts (C.S.), it was possible to deduce an s character series which was consistent with known structural data.

Although the agreement between predicted and observed quadrupole splittings is generally very good^{1, 2, 3, 5}, the predicted quadrupole splittings for some compounds such as the Cl_3SnM (M = Mn(CO)₅,

 $Fe(CO)_2cp$) were substantially larger than those observed. For example, for Cl₃SnFe(CO)₂cp, the predicted and observed quadrupole splittings are +2.16 mm s^{-1} and +1.83 mm s^{-1} respectively. To try to understand why such differences arise, we have undertaken a detailed study of the ⁵⁷Fe and ¹¹⁹Sn Mössbauer parameters for compounds of the type $Ph_{3-n}Cl_nSnFe(CO)_{2-x}$ $cpL_x[n = 0-3, x = 1 \text{ for } L = PPh_3, PEt_3, P(OPh)_3 \text{ and }$ x = 2 for $L = P(OPh)_3$ in which there should be small subtle changes in the Fe-Sn bond. Since this work was started, two papers on analogous Sn-Fe compounds of the types $R_3SnFe(CO)_{2-x}cpL_x^6$, $R_3SnFe(dppe)cp$ and X_3 SnFe(dppe)cp⁷ have been published. Because signs of quadrupole splittings were sometimes lacking, a complete interpretation in terms of partial quadrupole splittings could not be made. In addition, the interpretation of these two papers is often at variance with that proposed for similar R₃SnMn(CO)₄L compounds.⁸

With the large amount of data in this paper along with previous ¹¹⁹Sn spectra on similar compounds, we are able to rationalize differences in Mössbauer parameters in terms of changes in the Sn–Fe bond, and to propose a possible explanation for discrepancies between predicted and observed quadrupole splittings.

Experimental

All compounds in this work were prepared as described previously⁹. The ⁵⁷Fe Mössbauer spectra were obtained at 298 K using a 50 mCi ⁵⁷Co/Cu source, while the ¹¹⁹Sn spectra were obtained at 80 K using a 5 mCi BaSnO₃ source at room temperature. A typical ¹¹⁹Sn spectrum is given in the Figure. Calibration was performed using the ⁵⁷Fe spectrum of a 99.99% Fe foil at room temperature, and the scan centre method^{10, 11} Spectra were computed to Lorentzian line shapes using A. J. Stone's program as outlined previously.¹⁰ In some Sn spectra, no quadrupole splitting was visually resolvable, but χ^2 decreased by over 50 on fitting two peaks. Infrared spectra and H nmr spectra were obtained as described previously.⁹

Figure. ¹¹⁹Sn Mössbauer spectrum of Ph₂ClSnFe(CO)₂cp.

Discussion

⁵⁷Fe Spectra

⁵⁷Fe Mössbauer parameters are shown in Table I for the $Ph_{3-n}Cl_nFe(CO)_2cp$ and $Ph_{3-n}Cl_nFe(CO)cp$ PPh_3 compounds, as well as for the $Cl_3SnFe(CO)cpL$ $(L = PPh_3, PEt_3, P(OPh)_3 and P(OEt)_3)$ compounds and $Cl_3SnFecp[P(OPh)_3]_2$. The results for $Ph_3SnFe(CO)cp$ PPh_3 and $Cl_3SnFe(CO)cpPPh_3$ are in good agreement with those published previously⁶ when the centre shifts are corrected for the normal temperature shift between 78K and 298K.¹² Thus our room temperature centre shifts are ~0.07 mm s⁻¹ lower than those reported previously at liquid nitrogen temperature.

In the Ph_{3-n}Cl_nFe(CO)₂cp and Ph_{3-n}Cl_nFe(CO)cp PPh₃ compounds (1–4 and 5–8, Table I), the 57 Fe centre shifts are remarkably insensitive to the different substituents on the Sn, while the CO stretching frequencies and τ_{Cp} change substantially. The latter two variations indicate that there is a substantial build up of charge on the Fe atom from the Cl₃Sn compound to the Ph₃Sn compound, as expected from an increase in σ donor ability in this direction. Thus, CO becomes a better π acceptor from Cl₃Sn to Ph₃Sn, and the concomitant increase in τ_{Cp} indicates an increased shielding of the C5H5 protons. Such an inverse correlation between ν_{CO} and τ_{Cp} has been well documented.¹³ The constant 57Fe centre shift is one more indication of the high s character of the Sn-Fe bond - in this case the high Fe 4s character of the bond. Although Ph₃Sn is a better σ donor than Cl₃Sn, the Fe 4s character in the Fe-Sn bond in the Ph₃Sn compound is substantially smaller than in the Cl₃Sn compound such that the 4s electron density and the s electron density at the Fe nucleus is very similar for both. The Fes character thus parallels the change in Sn s character of the Fe-Sn bond.1,2

However in the CO substituted compounds (5–12, Table I), the ⁵⁷Fe C.S. changes in a way which is entirely consistent with that expected from Fe(II) low spin compounds¹². Thus for PPh₃, a constant increase in C.S. of about 0.10 mm s⁻¹ is obtained on substituting CO for PPh₃ (compounds 5–8). This is very close to the difference in partial centre shift values (0.08 mm s⁻¹) assigned to these two ligands in the Fe(II) work¹², and indicates that PPh₃ is an appreciably poorer ($\sigma + \pi$) ligand than CO^{12, 14}. Similarly for compounds 8–11, it is apparent that ($\sigma + \pi$) increases in the order PPh₃

	Compound	C.S. ^{a, b}	Δ C.S. ^{a, c}	Q.S.ª	Γ_1^{a}	$\Gamma_2^{\mathbf{a}}$	v(CO)0	cm ^{-1 d}	τ _{cp} ^f
1.	Ph ₃ SnFe(CO) ₂ cp	0.28		1.75	0.27	0.26	1997	1950	5.29 s
2.	Ph ₂ ClSnFe(CO) ₂ cp	0.30		1.71	0.25	0.28	2014	1966	5.12 s
3.	PhCl ₂ SnFe(CO) ₂ cp	0.30		1.68	0.25	0.27	2030	1986	4.96 s
4.	Cl ₃ SnFe(CO) ₂ cp	0.32		1.82	0.27	0.26	2050	2010	4.94 s
5.	Ph ₃ SnFe(CO)(cp)PPh ₃	0.39	0.11	1.79	0.23	0.25	1913	1924 sh ^e	5.67 d
6.	Ph ₂ ClSnFe(CO)(cp)PPh ₃	0.39	0.09	1.73	0.24	0.24	1932		5.48 d
7.	PhCl ₂ SnFe(CO)(cp)PPh ₃	0.40	0.10	1.73	0.24	0.24	1949		5.32 d
8.	Cl ₃ SnFe(CO)(cp)PPh ₃	0.41	0.09	1.80	0.24	0.25	1973°		5.28 d
9.	Cl ₃ SnFe(CO)(cp)PEt ₃	0.40	0.08	1.84	0.30	0.31	1968		5.22 d
10.	$Cl_3SnFe(CO)(cp)P(OPh)_3$	0.36	0.04	1.77	0.25	0.26	1996		5.54 d
11.	$Cl_3SnFe(CO)(cp)P(OEt)_3$	0.35	0.03	1.79	0.30	0.26	1985		5.61 d
12.	$Cl_3SnFe(cp)[P(OPh)_3]_2$	0.44	0.12	1.80	0.25	0.26	-		5.55 t

TABLE I. ⁵⁷Fe Mössbauer, Infrared and NMR Data for the Compounds Ph_{3-n}Cl_nSnFe(CO)_{2-x}(cp)L_x at 298°K.

^a All units are in mm s⁻¹ and errors are ± 0.01 mm s⁻¹ for C.S. and Q.S. and ± 0.02 mm s⁻¹ for \triangle C.S. ^b Relative to sodium nitroprusside. ^c \triangle C.S. = C.S. [Ph_{3-n}Cl_nSnFe(CO)_{2-x}cpL_x]-C.S. [Ph_{3-n}Cl_nSnFe(CO)₂cp]. ^d In CHCl₃ solution, errors are ± 4 cm⁻¹. ^e From reference 6, values for Ph₃SnFe(CO)(cp)PPh₃ are 1911 and 1923 cm⁻¹, and 1969 cm⁻¹ for Cl₃SnFe(CO)(cp)PPh₃ both in cyclohexane solution. ^f In CDCl₃ solution: s, singlet; d, doublet; t, triplet, errors are ± 0.01 .

E<PEt₃<P(OPh)₃<P(OEt)₃<CO in agreement with the order established from the Fe(II) low spin compounds. Once again, Δ C.S. is within error equal to the differences in pcs values (Δ pcs) established in the Fe(II) study (Δ pcs for PPh₃, P(OPh)₃ and P(OEt)₃ are 0.07, 0.06 and 0.05 mm s⁻¹ respectively compared to Δ C.S. in Table I of 0.08, 0.04 and 0.03 mm s⁻¹ respectively).

As for the Fe(II) carbonyl compounds reported earlier¹², the phosphite compounds have substantially larger ν_{CO} frequencies than the phosphines indicating that the phosphites are substantially better π acceptors than the phosphines. Also, the CO doublet in the infrared for Ph₃SnFe(CO)cpPPh₃ is consistent with the existence of two rotamers, as noticed previously⁶.

As noted in previous papers^{6,15}, the quadrupole splittings are all $\sim 1.8 \pm 0.1$ mm s⁻¹ and there are no discernable trends. These constant values are due to the compensating bonding nature of CO and Cp, and

the changes in η which can mask changes in the Q.S. due to bonding variations.¹⁵

¹¹⁹Sn spectra

As shown in our previous work^{1,2,3}, the centre shift for the $R_{3-n}Cl_nSnM$ compounds $[M = Fe(CO)_2cp$, $Mn(CO)_s]$ increases as x increases, and a parallel trend is seen in Table II for the substituted compounds. This trend is largely due^{2,3} to the concentration of Sn 5s electron density in the Sn–M bond, and the high *p* character in the Sn–X bonds. It is immediately apparent in the substituted compounds that the Sn C.S. increases from the parent compound and that the phosphites generally show smaller increases in the Sn C.S. than the phosphines–as for the Fe C.S. results. Thus the *s* electron density at the Sn nucleus increases in the order CO $< P(OR)_3 < PR_3$. It is interesting that the change in ¹¹⁹Sn C.S. is at least as large as the changes in ⁵⁷Fe

TABLE II. ¹¹⁹Sn Mössbauer Data for the compounds Ph_{3-n}Cl_nSnFe(CO)_{2-x}(cp)L_x at 80°K.

Compound	C.S. ^{a, b, g}	⊿ C.S. ^{c, g}	Q.S. ^{a, g}	⊿ Q.S. ^{c, g}	Γ_1^{a}	Γ_2^{a}	
Ph ₃ SnFe(CO) ₂ cp ^d	1.39		0.32 ± 0.10		1.06	1.06	
e	1.41	1.41		0		0.96	
Ph ₂ ClSnFe(CO) ₂ cp ^d	1.57		2.54		1.31	1.16	
PhCl ₂ SnFe(CO) ₂ cp ^d	1.70		2.84		1.15	1.12	
$Cl_3SnFe(CO)_2cp^d$	1.75		1.83		1.18	1.12	
e	1.77		1.80		0.99	0.99	
Ph ₃ SnFe(CO)(cp)PPh ₃	1.53	0.14	0.66 ± 0.10	0.34 ± 0.15	1.22	0.95	
e	1.48		0.69		0.83	0.83	
Ph ₂ ClSnFe(CO)(cp)PPh ₂	1.63	0.11	2.74	0.20	1.07	1.07	
PhCl ₂ SnFe(CO)(cp)PPh ₂	1.80	0.10	3.00	0.16	1.04	1.05	
Cl ₂ SnFe(CO)(cp)PPh ₂	1.86	0.11	1.89	0.06	1.10	1.04	
e	1.88		1.88		0.82	0.80	
Ph ₂ SnFe(CO)(cp)PEt ₂	1.51	0.12	0.76 ± 0.10	0.44 ± 0.15	1.03	1.00	
Ph ₂ ClSnFe(CO)(cp)PEt ₃	1.63	0.11	2.59	0.05	1.27	1.08	
PhCl ₂ SnFe(CO)(cp)PEt ₂	1.83	0.13	3.03	0.19	1.23	1.11	
$Cl_3SnFe(CO)(cp)PEt_3$	1.95	0.20	1.91	0.08	1.15	1.07	
$Ph_3SnFe(CO)(cp)P(OPh)_3^{f}$	1.48	0.09	0.53 ± 0.10	0.21 ± 0.15	0.97	0.97	
5 ()(1) ()5	1.39	0	0	0	1.1	29	
Ph ₂ ClSnFe(CO)(cp)P(OPh) ₃	1.57	0.05	2.69	0.15	1.29	1.13	
$PhCl_2SnFe(CO)(cp)P(OPh)_3$	1.77	0.07	2.83	-0.01	1.13	0.98	
$Cl_3SnFe(CO)(cp)P(OPh)_3$	1.79	0.04	1.82	-0.01	1.14	0.96	
Ph ₂ SnFe(cp)[P(OPh) ₂] ₂	1.49	0.10	0.78 ± 0.10	0.46 ± 0.15	1.05	0.93	
Ph ₂ ClSnFe(cp)[P(OPh) ₂] ₂	1.65	0.13	2.71	0.17	1.07	1.03	
PhCl ₂ SnFe(cp)[P(OPh) ₃] ₂	1.75	0.05	2.90	0.06	1.07	1.04	
$Cl_3SnFe(cp)[P(OPh)_3]_2$	1.88	0.13	1.92	0.09	1.17	0.97	
$Cl_3SnFe(CO)(cp)P(OEt)_3$	1.77	0.02	1.85	0.02	1.12	1.04	

^a All units are in mm s⁻¹. ^b C.S. values are relative to barium stannate at room temperature. ^c Δ C.S. (Q.S.) = C.S. (Q.S.)[Ph_{3-n}Cl_nSnFe(CO)_{2-x}cpL_x]–C.S. (Q.S.)[Ph_{3-n}Cl_nSnFe(CO)₂cp]. ^d Reference 2. ^e Reference 6. ^f Constrained fit; line widths held equal at 0.97 mm s⁻¹. ^g Errors in C.S. and Q.S. are ±0.02 mm s⁻¹, and ±0.04 mm s⁻¹ for Δ C.S. and Δ Q.S. except where noted.

C.S. for the same compound indicating a fairly free flow of electrons across the Fe–Sn bond.

The increase in C.S. cannot be rationalized by a π bonding argument as pointed out recently^{6,16} because the expected strongest π acceptor Fe(CO)₂cp gives the smallest Sn C.S. Thus the increase in Sn C.S. can only be due to an increase in σ donor power in the order $L = CO < P(OR)_3 < PR_3$ and/or that there is an increase in the Sn *s* character of the Sn–Fe bond in the above direction. As we will show below, the quadrupole splittings indicate that the *s* character of the Sn–Fe bond increases in the opposite order to that given above, *i.e.* PR₃ $\leq P(OR)_3 < CO$. It thus appears that the donor properties of the ligands are most important in determining the ¹¹⁹Sn C.S. in these compounds.

We assume that all Ph₃Sn compounds have negative quadrupole splittings as shown for Bu₃SnFe(CO)₂ cp,¹⁷ and that the Cl₃Sn compounds have positive Q.S. as shown for Cl₃SnMn(CO)₅ and Cl₃SnFe(CO)₂ cp17. It is immediately apparent from Table II that for the Sn-Fe compounds, the substituted Ph₃SnFe(CO) cpL compounds have Q.S. values that become larger (more negative) than the parent Ph₃SnFe(CO)₂cp. In contrast, the corresponding Q.S. for the Ph₃SnCo (CO)₃L compounds become smaller than their parent Ph₃SnCo(CO)₄ (Table III). These results indicate that the pqs values for the Fe(CO)cpL species becomes less negative than that for Fe(CO)₂cp, while those for the $Co(CO)_3L$ species become more negative than for Co(CO)₄. Specifically, the derived pqs value for Fe(CO)cpPPh₃ is -0.93 mm s⁻¹ compared to -1.08 mm s^{-1} for Fe(CO)₂cp, while that for Co(CO)₃PPh₃ is \geq -0.9 mm s⁻¹ compared to -0.7 mm s⁻¹ for Co(CO)₄. Using the pqs treatment, the SnCl₃ compounds should show equal and opposite changes in Q.S. between the parent and substituted compounds. This is in fact observed for the Co(CO)₄ and Co(CO)₃PBu₃ compounds, but is not observed for the Fe(CO)₂cp compounds (Tables II and III). The predicted values for Cl₃SnCo (CO)₄, Cl₃SnCo(CO)₃PBu₃ and Cl₃SnFe(CO)cpPPh₃

TABLE III. ¹¹⁹Sn Mössbauer Quadrupole Splittings for Substituted $R_{3-n}Cl_nCo(CO)_4$ Compounds.

Compound	Q.S.	⊿ Q.S.	Ref.
Cl ₃ SnCo(CO) ₄	(+) 1.20	0.47	3, 16
Cl ₃ SnCo(CO) ₃ PBu ₃	(+) 1.67		16
Ph ₃ SnCo(CO) ₄	(-) 1.14	>0.5	3, 16
Ph ₃ SnCo(CO) ₃ PBu ₃	<0.6		16
$Cl_2Sn[Co(CO)_4]_2$	1.43	0.53	3, 16
$Cl_2Sn[Co(CO)_3PBu_3]_2$	1.96		16
Ph ₂ Sn[Co(CO) ₄] ₂	1.22	>0.6	3, 16
Ph ₂ Sn[Co(CO) ₃ PBu ₃] ₂	< 0.6		16

(and other L ligands) are in substantial agreement with those observed, while the predicted value for Cl₃SnFe (CO)₂cp differs from the observed by over 0.4 mm s⁻¹. Predicted (and observed) values in mm s⁻¹ are respectively; 1.42(1.20), ~1.8(1.67), 1.86(1.89) and 2.16(1.83).

The above trends can be rationalized considering the relative *s* characters of the Sn–M bonds. We have shown previously^{2, 3} that the Sn–Fe bond in the Fe(CO)₂cp compounds has a larger and more variable Sn 5*s* character than the Sn–Co bonds in the Co(CO)₄ compounds. For convenience, the pqs can be represented by:

$$pqs_{\infty} - \sigma(1-s) \tag{1}$$

where σ = donor capacity of the ligand L, s = Sn 5s character in the Sn-L bond. Thus the pqs value becomes more negative as σ increases and more positive as the s character increases. The increased negative pqs value for $Co(CO)_3PBu_3$ compared to $Co(CO)_4$ is readily rationalized if Co(CO)₃PBu₃ is a better donor than Co(CO)₄, as expected. The acceptable agreement between predicted and observed quadrupole splittings for both Co(CO)₄ and Co(CO)₃PBu₃ compounds indicates that the pqs value (and thus the s character of the Sn--Co bond) is not changing substantially. The s character in the Sn-Co bond in the Cl₃SnCo compounds is known to be slightly larger than the s character in the Sn-Co bond in the Ph₃SnCo compounds. This increase results in a slightly smaller measured Q.S. than predicted for the Cl₃SnCo compounds. In addition, the s character in the Sn-Co bond does not appear to vary measurably between Co(CO)₄ and Co(CO)₃PBu₃, and the expected differences in the Ph₃Sn, Ph₂Sn, Cl₃Sn and Cl₂Sn compounds are observed (Table III).

However, for the Fe(CO)cpL species, the s character in the Sn-Fe bond varies markedly, both between the Ph₃SnFe compound and the Cl₃SnFe compounds, but also as CO is replaced by phosphines and phosphites. In the Fe(CO)₂cp compounds, the s character in the Sn-Fe bond increases markedly on going from the Ph₃Sn compound to the Cl₃Sn compound², such that the "effective" pqs value for Fe(CO)₂cp varies from -1.08 mm s⁻¹ to -0.93 mm s⁻¹ respectively. This decrease in pqs is as expected if s is dominant in eq. 1. When CO is replaced by phosphines or phosphites, the pqs value for the Fe(CO)cpL moiety becomes less negative despite the expected increase in σ . The decrease in pqs value can then be attributed to a smaller Sn s character in the Sn-Fe bond in Fe(CO)cpL than in $Fe(CO)_2 cp$, and we obtain good agreement between predicted and observed Q.S. for the Cl₃SnFe(CO)cpL compounds. Like in the Co compounds, the smaller s character is accompanied by a smaller variation in s character between Ph₃SnM and Cl₃SnM compounds. At the present time, we prefer not to derive pgs values for the substituted ligands Fe(CO)cpL because of the

relatively large error in the magnitudes of the Ph_3Sn Q.S. values.

It is apparent, then, that pqs values should be derived from the least distorted compounds in which the scharacters of the Sn ligand bonds are similar. Discrepancies between predicted and observed quadrupole splittings will occur when there are large changes in Sn s character in a Sn-L bond from one compound to another. For small changes in s character, compensating changes in pqs values of the other ligands will result in good agreement between predicted and observed Q.S. values.

Acknowledgment

We thank the National Research Council for financial support and Prof. H.C. Clark for helpful discussions.

References

- 1 G. M. Bancroft, K. D. Butler and A. T. Rake, J. Organomet. Chem., 34, 137 (1972).
- 2 G.M. Bancroft, K.D. Butler, A.T. Rake and B. Dale, J. Chem. Soc. (Dalton), 2025 (1972).
- 3 G.M. Bancroft and K.D. Butler, J. Chem. Soc. (Dalton), 1694 (1973).

- 4 G.M. Bancroft and R.H. Platt, Adv. Inorg. Radiochem., 15, 59 (1972); R.V. Parish, Prog. Inorg. Chem., 15, 101 (1972).
- 5 M.G. Clark, A.G. Maddock and R.H. Platt, J. Chem. Soc. (Dalton), 281 (1972).
- 6 W.R. Cullen, J.R. Sams and J.A.J. Thompson, *Inorg. Chem.*, 10, 843 (1971).
- 7 M.J. Mays and P.L. Sears, J. Chem. Soc. (Dalton), 1873 (1973).
- 8 S. Onaka and H. Sano, Bull. Chem. Soc. Japan, 45, 1271 (1972).
- 9 R.E.J. Bichler, H.C. Clark, B.K. Hunter, and A.T. Rake, J. Organomet. Chem., 69, 367 (1974).
- 10 G. M. Bancroft, "Mössbauer Spectroscopy: An Introduction for Inorganic Chemists and Geochemists", McGraw-Hill, Maidenhead, 1973.
- 11 J.G. Stevens and R.S. Preston, "Mössbauer Effect Data Index Covering the 1970 Literature," edited by J.G. Stevens and V.E. Stevens, Plenum Press, N.Y., 1972.
- 12 G.M. Bancroft and E.T. Libbey, J. Chem. Soc. (Dalton), 2103 (1973).
- 13 R.B. King, Inorg. Chim. Acta, 2, 454 (1968).
- 14 G.M. Bancroft, M.J. Mays and B.E. Prater, J. Chem. Soc. (Dalton), 956 (1970).
- 15 G.M. Bancroft, K.D. Butler, L.E. Manzer, A. Shaver and J.E.H. Ward, *Can. J. Chem.*, 52, 782 (1974).
- 16 S.R.A. Bird, J.D. Donaldson, A.F. LeC. Holding, S. Cenini and B. Ratcliff, *Inorg. Chim. Acta*, 8, 149 (1974).
- 17 B.A. Goodman, R. Greatrex and N.N. Greenwood, J. Chem. Soc. A, 1868 (1971).